Exploring the Antioxidant Potential and HPLC Profile of Fenugreek (Trigonella foenum-graecum L.) Seed Extracts

Ahmed Hazel (1) , Ouahiba Moumen (2) , Ouardia Ould ali (3) , Hakim Ouadjed (4) , Abdelaziz Mechrour (5)
(1) Mustapha Stambouli University, Faculty of Natural and Life Sciences, Department of Biology, Geomatics, Ecology and Environment Laboratory (LGéo2E) Mascara , Algeria
(2) Mustapha Stambouli University, Faculty of Natural and Life Sciences, Department of Biology, Geomatics, Ecology and Environment Laboratory (LGéo2E) Mascara , Algeria
(3) Mustapha Stambouli University, Faculty of Natural and Life Sciences, Department of Biology, Geomatics, Ecology and Environment Laboratory (LGéo2E) Mascara , Algeria
(4) Mustapha Stambouli University of Mascara, Faculty of Economics, Business and Management Sciences, Biomathematics Laboratory, BO. 89 Sidi-Bel-Abbes, Algeria , Algeria
(5) Mustapha Stambouli University, Faculty of Natural and Life Sciences, Department of Biology, Biological Systems and Geomatics Research Laboratory (LRSBG), Mascara , Algeria

Abstract

Background: The growing concerns regarding the adverse effects of synthetic antioxidants, coupled with documented detrimental outcomes of adverse drug reactions, such as increased morbidity, mortality, and hospitalization, as highlighted by several studies, have emphasized the necessity of natural alternatives. Therefore, medicinal compounds derived from plants are increasingly advocated for the management of various diseases, due to their perceived minimal side effects and extensive health benefits.


Aims:  The objective of the present study was to investigate the potential of Trigonella foenum-graecum seeds as a natural source of bioactive compounds by assessing their antioxidant activity employing various in vitro assays. Additionally, this study aimed to determine the total phenolic, falconoid, and tannin contents in both hydroethanolic (50% v/v) and hydromethanolic (50% v/v) extracts. Furthermore, phytochemical profiling of the fenugreek seed extract was performed utilizing High-Performance Liquid Chromatography (HPLC).


Materials and Methods: Following the extraction and quantification of total polyphenols, flavonoids, and tannins from hydroethanolic and hydromethanolic extracts, antioxidant activity was assessed employing three in vitro assays: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test, the ferric reducing antioxidant power (FRAP) assay, and the total antioxidant capacity (TAC) assay. Phenolic compounds were separated and identified using HPLC with Diode Array Detection (DAD). The obtained data were analyzed using SPSS software.


Results: Phytochemical analysis revealed that the hydroethanolic extract exhibited a higher total polyphenol content (50.5 mg GAE/g) compared to the hydromethanolic extract (47.33 mgGAE/g). However, the evaluation of the antioxidant activity demonstrated that the hydromethanolic extract displayed the highest reducing power, as evidenced by the DPPH (IC50=314,53 mg/L), FRAP (21.49 mg AAE/g), and TAC (74.53 mg AAE/g) assays. Chromatographic characterization by HPLC identified six phytochemical compounds in the hydromethanolic extract of T. foenum graecum powder, which was obtained through maceration.


Conclusions: In conclusion, Trigonella foenum graecum seeds represent a promising natural resource possessing significant biological activity. Their potent antioxidant properties render them valuable candidates for incorporation in pharmaceutical and cosmetic formulations to promote health and reduce damage induced by oxidative stress.


Keywords: Trigonella foenum-graecum, Polyphenols, Antioxidant activity, Chromatography.

Full text article

Generated from XML file

References

Abdouli, H., Hadj-Ayed, M., Elham, M., Nabila, B., & Remedios Alvir Morencos, M. (2012). Proximate composition, and total phenols, tannins, flavonoids and saponins, and in vitro ruminal fermentation activity of fenugreek cut at three maturity stages. Livest Res Rural Dev, 1.
Abdouli, H., Haj-Ayed, M., Belhouane, S., & Emna, E. H. (2014). Effect of feeding hens with fenugreek seeds on laying performance, egg quality characteristics, serum and egg yolk cholesterol. Journal of New Sciences.
Aylanc, V., Eskin, B., Zengin, G., Dursun, M., & Cakmak, Y. S. (2020). In vitro studies on different extracts of fenugreek (Trigonella spruneriana BOISS.): Phytochemical profile, antioxidant activity, and enzyme inhibition potential. Journal of Food Biochemistry, 44(11), e13463. https://doi.org/10.1111/jfbc.13463
Ba, K., Tine, E., Destain, J., Cissé, N., & Thonart, P. (2010). Étude comparative des composés phénoliques, du pouvoir antioxydant de différentes variétés de sorgho sénégalais et des enzymes amylolytiques de leur malt. Biotechnologie, Agronomie, Société et Environnement, 14(1).
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M. S. J., El Feki, A., & Makni-Ayedi, F. (2013). Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 138(2–3), 1448–1453. https://doi.org/10.1016/j.foodchem.2012.11.003
Benziane, M. N. A., Acem, K., Aggad, H., & Abdali, M. (2019). Phytochemistry, HPLC profile and antioxidant activity of aqueous extracts of fenugreek ( L.) seeds grown in arid zones of Algeria. Acta Scientifica Naturalis, 6(2), 71-87. https://doi.org/doi:10.2478/asn-2019-0020
Bosso, A., Guaita, M., & Petrozziello, M. (2016). Influence of solvents on the composition of condensed tannins in grape pomace seed extracts. Food Chemistry, 207, 162-169. https://doi.org/10.1016/j.foodchem.2016.03.084
Bukhari, S. B., Bhanger, M. I., & Memon, S. (2008). Antioxidative activity of extracts from fenugreek. Pakistan Journal of Analytical and Environmental Chemistry, 9(2).
Bouhenni, H., Doukani, K., Hanganu, D., Olah, N.-K., Şekeroğlu, N., Gezici, S., Spinu, M., & Niculae, M. (2021). Comparative analysis on bioactive compounds and antioxidant activity of Algerian fenugreek (Trigonella foenum-graecum L.) and Syrian cumin (Cuminum cyminumL.) seeds. Herba Polonica, 67(1), 18–34. https://doi.org/10.2478/hepo-2021-0005
Bulgarevich, D. S., Sako, T., Sugeta, T., Otake, K., Takebayashi, Y., Kamizawa, C., Horikawa, Y., & Kato, M. (2002). The role of general and hydrogen-bonding interactions in the solvation processes of organic compounds by supercritical CO2/n-alcohol mixtures. Industrial & Engineering Chemistry Research, 41(9), 2074–2081. https://doi.org/10.1021/ie0106332
Catelani, T. A., Bittar, D. B., Pezza, L., & Pezza, H. R. (2016). A rapid and eco-friendly method for determination of hydrolysable tannins and its application to honey samples. Food Analytical Methods, 9, 2552-2559. https://doi.org/10.1007/s12161-016-0454-1 Corossref
Chabane, D., Saidi, F., & Rouibi, A. (2013). Activité hypoglycémique de l’extrait aqueux d’Ajuga iva L. Schreber chez les rats diabétiques induite par l’alloxane. Afrique Science: Revue Internationale Des Sciences et Technologie, 9(1), 120–127.
Faisal, Z., Irfan, R., Akram, N., Manzoor, H. M. I., Aabdi, M. A., Anwar, M. J.,…Afzaal, M. (2024). The multifaceted potential of fenugreek seeds: From health benefits to food and nanotechnology applications. Food science & nutrition, 12(4), 2294-2310. https://doi.org/10.1002/fsn3.3959
Fatima, H., Shahid, M., Pruitt, C., Pung, M. A., Mills, P. J., Riaz, M., & Ashraf, R. (2022). Chemical fingerprinting, antioxidant, and anti-inflammatory potential of hydroethanolic extract of Trigonella foenum-graecum. Antioxidants (Basel, Switzerland), 11(2), 364. https://doi.org/10.3390/antiox11020364
Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248
Hameed, S., Imran, A., Nisa, M. un, Arshad, M. S., Saeed, F., Arshad, M. U., & Asif Khan, M. (2019). Characterization of extracted phenolics from black cumin ( Nigella sativa linn), coriander seed (Coriandrum sativum L.), and fenugreek seed (Trigonella foenum-graecum ). International Journal of Food Properties, 22(1), 714–726. https://doi.org/10.1080/10942912.2019.1599390
Halliwell, B., & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine (5th ed.). Oxford University Press.
Hazrati, S., Mousavi, Z., & Nicola, S. (2024). Harvest time optimization for medicinal and aromatic plant secondary metabolites. Plant Physiology and Biochemistry, 108735. https://doi.org/10.1016/j.plaphy.2024.108735
Jonville-Béra, A.-P., Mallaret, M., Sgro, C., & l’Association française des Centres régionaux de pharmacovigilance. (2016). Le congrès de la Société française de pharmacologie et de thérapeutique célèbre à Nancy, le 20 avril 2016, les 40 ans des centres régionaux français de pharmacovigilance ! Therapies, 71(4), 351–354. https://doi.org/10.1016/j.therap.2016.05.002
Kasangana, P. B., Haddad, P. S., & Stevanovic, T. (2015). Study of polyphenol content and antioxidant capacity of Myrianthus arboreus (cecropiaceae) root bark extracts. Antioxidants (Basel, Switzerland), 4(2), 410–426. https://doi.org/10.3390/antiox4020410
Kumar, A. (2019). Fenugreek. Sankalp Publication.
Kenny, O., Smyth, T. J., Hewage, C. M., & Brunton, N. P. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chemistry, 141(4), 4295–4302. https://doi.org/10.1016/j.foodchem.2013.07.016
Keshavarzi, M., Najafi, G., Ahmadi Gavlighi, H., Seyfi, P., & Ghomi, H. (2020). Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. Journal of Food Science, 85(10), 3415-3422. https://doi.org/10.1111/1750-3841.15448 Corssref
Kowalczyk, D., Świeca, M., Cichocka, J., & Gawlik-Dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets: Phenolic content and antioxidant activity of extracts of hops. Journal of the Institute of Brewing. Institute of Brewing (Great Britain). https://doi.org/10.1002/jib.73 Corssref
Ladoh, Y. C. F., Dibong, S. D., Nyegue, M. A., Djembissi, T. R. P., Lenta, N. B., Mpondo, M. E., Yinyang, J., & Wansi, J. D. (2015). Activité antioxydante des extraits méthanoliques de Phragmanthera capitata (Loranthaceae) récoltée sur Citrus sinensis. Journal of Applied Biosciences, 84(1), 7636. https://doi.org/10.4314/jab.v84i1.9 Corssref
Liu, Y., Kakani, R., & Nair, M. G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187–1192. https://doi.org/10.1016/j.foodchem.2011.09.102
Nam, T.-G., Lee, S. M., Park, J.-H., Kim, D.-O., Baek, N.-I., & Eom, S. H. (2015). Flavonoid analysis of buckwheat sprouts. Food Chemistry, 170, 97–101. https://doi.org/10.1016/j.foodchem.2014.08.067
Norziah, M., Fezea, F., Bhat, R., & Ahmad, M. (2015). Effect of extraction solvents on antioxidant and antimicrobial properties of fenugreek seeds (Trigonella foenum-graecum L.). International Food Research Journal, 22(3). https://doi.org/10.1016/j.foodchem.2013.07.016
Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The chemistry behind the Folin-Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a Mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543–17553. https://doi.org/10.1021/acs.jafc.3c04022
Renugadevi, K., Nachiyar, C. V., Sowmiya, P., & Sunkar, S. (2018). Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatalysis and Agricultural Biotechnology, 16, 237-242. https://doi.org/10.1016/j.bcab.2018.08.009
Sano, H., Kawaguchi, S., Iimori, T., Kuragano, M., Tokuraku, K., & Uwai, K. (2023). On-Site Evaluation of Constituent Content and Functionality of Perilla frutescens var. crispa Using Fluorescence Spectra. Molecules (Basel, Switzerland), 28(20), 7199. https://doi.org/10.3390/molecules28207199
Sathisha, A. D., Lingaraju, H. B., & Prasad, K. S. (2011). Evaluation of antioxidant activity of medicinal plant extracts produced for commercial purpose. Journal of Chemistry, 8(2), 882–886. https://doi.org/10.1155/2011/693417
Saxena, S., Karwa, S., & Saxena, R. (2011). Analysis of antioxidant activity, phenolic and flavanoids content of fenugreek (Trigonella foenum-graecum L.) seed extracts. International Journal of Seed Spices, 1(1), 38–43.
Sharma, R., & Maloo, S. (2022). 3 Distribution, Bio-Diversity Biology. In of Fenugreek and. Fenugreek: Traditional and Modern Medicinal Uses.
Smeriglio, A., Mandalari, G., Bisignano, C., Filocamo, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Industrial Crops and Products, 83, 283–293. https://doi.org/10.1016/j.indcrop.2015.11.089
Sofowora, A. (2010). Plantes médicinales et médecine traditionnelle d'Afrique. Karthala Éditions.
Teleanu, R. I., Chircov, C., Grumezescu, A. M., Volceanov, A., & Teleanu, D. M. (2019). Antioxidant therapies for neuroprotection-A review. Journal of Clinical Medicine, 8(10), 1659. https://doi.org/10.3390/jcm8101659
Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 24(4–5), 615–619. https://doi.org/10.1016/j.jfca.2010.09.018
Zeng, Y., Zhou, W., Yu, J., Zhao, L., Wang, K., Hu, Z., & Liu, X. (2023). By-products of fruit and vegetables: Antioxidant properties of extractable and non-extractable phenolic compounds. Antioxidants (Basel, Switzerland), 12(2). https://doi.org/10.3390/antiox12020418

Authors

Ahmed Hazel
ahmed.hazel@univ-mascara.dz (Primary Contact)
Ouahiba Moumen
Ouardia Ould ali
Hakim Ouadjed
Abdelaziz Mechrour
Hazel, A., Moumen, . O., Ould ali, . O., Ouadjed , H., & Mechrour , A. (2025). Exploring the Antioxidant Potential and HPLC Profile of Fenugreek (Trigonella foenum-graecum L.) Seed Extracts. The North African Journal of Food and Nutrition Research, 9(19), 203–212. https://doi.org/10.51745/najfnr.9.19.203-212

Article Details

Received 2025-01-26
Accepted 2025-04-26
Published 2025-05-26