Evaluation of Hematopoietic and Immune Toxicity in First-Generation (G1) Rats Following Maternal Thiacloprid Exposure During Gestation and Lactation, and the Protective Potential of Bitter Apricot Kernel Extract

Dounia Djellal (1) , Mohamed Kebieche (2)
(1) Department of Microbiology and Biochemistry, Faculty of Life and Natural Science, University of Batna2, Route de Constantine, 05078, Fesdis, Batna , Algeria
(2) Department of Microbiology and Biochemistry, Faculty of Life and Natural Science, University of Batna2, Route de Constantine, 05078, Fesdis, Batna , Algeria

Abstract

Background: Thiacloprid, a neonicotinoid insecticide, is known to accumulate in various fruits and vegetables, including fresh tomatoes. There is escalating concern about the potential health risks associated with its exposure, particularly during vulnerable periods such as gestation and lactation. While previous studies have indicated adverse effects of neonicotinoids on diverse physiological systems, information on their impact on the hematopoietic and immune systems at low doses remains limited.


Aims: The aim of this study was to evaluate the toxicity of thiacloprid at a microdose of 0.02 mg/kg and to assess the preventive effects of the hydroalcoholic extract derived from bitter almond apricot kernels (at a dose of 50 mg/kg) on the hematopoietic and immune systems during gestation (approximately 19 to 21 days) and lactation (approximately 3 to 4 weeks) in male and female Generation 1 (G1) rats.


Methods: The investigation employed several methodological approaches to examine the effects of thiacloprid and the putative protective potential of the extract. Hematological and immunological parameters were evaluated using automated systems and specialized kits. Rats were systematically allocated into distinct experimental groups, including those exposed to thiacloprid and those concurrently treated with the apricot kernel extract, to observe the impacts on blood and immune parameters. Furthermore, histological analyses of the thymic tissue were performed to assess structural alterations induced by thiacloprid exposure and to ascertain the potential protective effects of the extract.


Results: The results revealed a significant reduction in erythrocyte count, hematocrit, hemoglobin (HGB), and fibrinogen concentrations in rats exposed to thiacloprid. Conversely, a significant increase was observed in total white blood cell count, lymphocyte count, platelet count, mean corpuscular volume (MCV), reticulocyte levels, prothrombin time (PT), and activated partial thromboplastin time (aPTT). However, treatment with the apricot kernel extract led to notable amelioration of these perturbed parameters across the treated groups, indicative of a protective effect. Histological examination of thymic tissue from thiacloprid-exposed rats demonstrated severe histopathological damage, characterized by profound destruction of the thymic parenchyma, multifocal necrotic lesions, and the presence of numerous apoptotic bodies. In contrast, the thymic architecture remained intact in the extract-treated groups, with no significant histological abnormalities, thereby further corroborating the protective potential of the apricot kernel extract.


Conclusions: Exposure to thiacloprid, even at a microdose, can induce discernible toxicity within the hematopoietic and immune systems during critical development stages. Nevertheless, the hydroalcoholic extract of bitter almond from apricot kernels appears to safeguard the cellular integrity of blood and its parameters against the toxic effects of this insecticide, likely attributable to its beneficial phytochemical constituents.


Keywords: Thiacloprid toxicity; Bitter apricot kernel extract; Hematopoietic and Immune systems; Gestation and Lactation; Thymus histology.

Full text article

Generated from XML file

References

Abdel Ghaffar, F. R., Ibrahim, H. M., Hassouna, I. A., Elelaimy, I. A., & Abd El latif, H. M. (2016). Hematotoxicity of diazinon pesticide at different time intervals in male albino rats. Journal of Bioscience and Applied Research, 2(3), 208–220. https://doi.org/10.21608/jbaar.2016.106947
Abou-Zeid, S. M., Aljuaydi, S. H., AbuBakr, H. O., Tahoun, E. A., Di Cerbo, A., Alagawany, M., Khalil, S. R., & Farag, M. R. (2021). Astaxanthin mitigates thiacloprid-induced liver injury and immunotoxicity in male rats. Marine Drugs, 19(9), 525. https://doi.org/10.3390/md19090525
Akash, M. S. H., Sabir, S., & Rehman, K. (2020). Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. Environmental Toxicology and Pharmacology, 77, 103373. https://doi.org/10.1016/j.etap.2020.103373
Albadrani, M. S., Aljassim, M. T., & El-Tokhy, A. I. (2024). Pesticide exposure and spontaneous abortion risk: A comprehensive systematic review and meta-analysis. Ecotoxicology and Environmental Safety, 284(117000), 117000. https://doi.org/10.1016/j.ecoenv.2024.117000
Al-Juhaimi, F. Y., Ghafoor, K., Özcan, M. M., Uslu, N., Babiker, E. E., Ahmed, I. A. M., & Alsawmahi, O. N. (2021). Phenolic compounds, antioxidant activity and fatty acid composition of roasted alyanak apricot kernel. Journal of Oleo Science, 70(5), 607-613. https://doi.org/10.5650/jos.ess20294
Al-Juhaimi, F., Musa Özcan, M., Ghafoor, K., & Babiker, E. E. (2018). The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chemistry, 243, 414–419. https://doi.org/10.1016/j.foodchem.2017.09.100
Arrigo, F., Arfuso, F., Impellitteri, F., Giannetto, C., Piccione, G., & Faggio, C. (2023). Blood from horses and cows in vitro exposed to quaternium-15 and thiacloprid: haematology and erythrocyte osmotic fragility alterations. Applied Sciences, 13(7), 4413. https://doi.org/10.3390/app13074413
European Food Safety Authority (EFSA), Crivellente, F., Hart, A., Hernandez-Jerez, A. F., Hougaard Bennekou, S., Pedersen, R., Terron, A., Wolterink, G., & Mohimont, L. (2019). Establishment of cumulative assessment groups of pesticides for their effects on the nervous system. EFSA Journal, 17(9), e05800. https://doi.org/10.2903/j.efsa.2019.5800
Aydin, B. (2011). Effects of thiacloprid, deltamethrin and their combination on oxidative stress in lymphoid organs, polymorphonuclear leukocytes and plasma of rats. Pesticide Biochemistry and Physiology, 100(2), 165-171. https://doi.org/10.1016/j.pestbp.2011.03.006
Bellier, S., & Cordonnier, N. (2010). Les valeurs usuelles en hématologie vétérinaire. Revue Francophone des Laboratoires, 2010(420), 27-42. https://doi.org/10.1016/S1773-035X(10)70419-6
Chachoui, A., Boussahela, H., & Madjour, S. (2022). Evaluation d’un stress oxydant mitochondrial induit par un pesticide chez les rats Wistar (Doctoral dissertation, Université Larbi Tébessi-Tébessa).
Chakroun, S., Ezzi, L., Grissa, I., Kerkeni, E., Neffati, F., Bhouri, R., Sallem, A., Najjar, M. F., Hassine, M., Mehdi, M., Haouas, Z., & Ben Cheikh, H. (2016). Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats. Environmental Science and Pollution Research International, 23(24), 25191–25199. https://doi.org/10.1007/s11356-016-7650-9
Chelly, S., Chelly, M., Salah, H. B., Athmouni, K., Bitto, A., Sellami, H., Kallel, C., & Bouaziz-Ketata, H. (2019). HPLC-DAD analysis, antioxidant and protective effects of Tunisian Rhanterium suaveolens against acetamiprid induced oxidative stress on mice erythrocytes. Chemistry & Biodiversity, 16(12), e1900428. https://doi.org/10.1002/cbdv.201900428
Chen, M., Tao, L., McLean, J., & Lu, C. (2014). Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures. Journal of Agricultural and Food Chemistry, 62(26), 6082–6090. https://doi.org/10.1021/jf501397m
Cloutier, L., Rene, A., & Jutras, A. (2014). La formule sanguine complète. Pratique clinique. Pratique Clinique. Janvier-Février, 11(1), 28–32.
Cowgill, E. S., Neel, J. A., & Grindem, C. B. (2003). Clinical application of reticulocyte counts in dogs and cats. The Veterinary Clinics of North America. Small Animal Practice, 33(6), 1223–1244.
Crighton, G. (2013). Methods of coagulation. Methods in Molecular Biology (Clifton, N.J.), 992, 73–83. https://doi.org/10.1007/978-1-62703-339-8_5
Diakite, M., Kone, A., Kante, A. S., Sangare, M., Traore, C., Adjambri, A. S., Yayo, A. M., Latte, T., & Sawadogo, D. (2017). Anomalies Quantitatives Et Morphologiques De L'Hemogramme Chez Les Clients Reçus A L'Unite De CDV Du Laboratoire Central Du CHU De Yopougon Quantitative And Morphological Abnormalities Of Blood Cells Counts Among Customers Received VCT Unit Of The Central Laboratory Of The CHU Of Yopougon. Le Mali Medical, 32(3), 28–33.
Djellal, D., Haddad, S., Gasmi, S., Chouit, Z., Kebieche, M., Hachemi, M., Hanfer, M., Ferhat, N., Bennoune, O., Fetoui, H., & Soulimani, R. (2022). Chronic thiacloprid exposure impairs cognitive function and triggers mitochondrial apoptosis pathway in rat striatum and hippocampus: Neuropreventive effect of bitter apricot kernels extract (Prunus Armeniaca l.). The Journal of Microbiology, Biotechnology and Food Sciences, 12(3), e9089. https://doi.org/10.55251/jmbfs.9089
EFSA Scientific Committee. (2012). Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data: Guidance on default values to be used in the absence of measured data. EFSA Journal, 10(3), 2579. https://doi.org/10.2903/j.efsa.2012.2579
Galdíková, M., Holečková, B., & Schwarzbacherová, V. (2022). Bovine whole blood cells as a biomarker platform for biological toxicology: A focus on thiacloprid. In Biomarkers in Toxicology (pp. 1–18). Springer International Publishing https://doi.org/10.1007/978-3-030-87225-0_35-1
Galdíková, M., Holečková, B., Šiviková, K., Schwarzbacherová, V., & Koleničová, S. (2019). Evaluating the genotoxic damage in bovine whole blood cells in vitro after exposure to thiacloprid. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 61(104616), 104616. https://doi.org/10.1016/j.tiv.2019.104616
Galdíková, M., Šiviková, K., Holečková, B., Dianovský, J., Drážovská, M., & Schwarzbacherová, V. (2015). The effect of thiacloprid formulation on DNA/chromosome damage and changes in GST activity in bovine peripheral lymphocytes. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 50(10), 698–707. https://doi.org/10.1080/03601234.2015.1048102
Gavel, M. J., Richardson, S. D., Dalton, R. L., Soos, C., Ashby, B., McPhee, L., Forbes, M. R., & Robinson, S. A. (2019). Effects of 2 neonicotinoid insecticides on blood cell profiles and corticosterone concentrations of wood frogs (Lithobates sylvaticus). Environmental Toxicology and Chemistry, 38(6), 1273–1284. https://doi.org/10.1002/etc.4418
Ghosh, P., Bhattacharjee, D., & Nasipuri, M. (2016). Blood smear analyzer for white blood cell counting: A hybrid microscopic image analyzing technique. Applied Soft Computing, 46, 629–638. https://doi.org/10.1016/j.asoc.2015.12.038
Gomez, S. D., Bustos, P. S., Sánchez, V. G., Ortega, M. G., & Guiñazú, N. (2020). Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology, 431(152363), 152363. https://doi.org/10.1016/j.tox.2020.152363
Hafian, H., Furon, V., & Mauprivez, C. (2003). Orientation diagnostique devant les anomalies du temps de saignement, du temps de céphaline activé, du temps de Quick et de l’international normalized ratio. Médecine Buccale Chirurgie Buccale, 9(3), 185–190. https://doi.org/10.1051/mbcb/2003015
Houlot, R. (1984). Techniques d’histopathologie et de cytopathologie. Ed Maloine, 19, 225–227.
Ignjatovic, V. (2013). Thrombin clotting time. Methods in Molecular Biology (Clifton, N.J.), 992, 131–138. https://doi.org/10.1007/978-1-62703-339-8_10
Kammoun, I., Sellem, I., Ben Saad, H., Boudawara, T., Nasri, M., Gharsallah, N., Mallouli, L., & Amara, I. B. (2019). Potential benefits of polysaccharides derived from marine alga Ulva lactuca against hepatotoxicity and nephrotoxicity induced by thiacloprid, an insecticide pollutant. Environmental Toxicology, 34(11), 1165–1176. https://doi.org/10.1002/tox.22818
Kataria, S. K., Chhillar, A. K., Kumar, A., Tomar, M., & Malik, V. (2016). Cytogenetic and hematological alterations induced by acute oral exposure of imidacloprid in female mice. Drug and Chemical Toxicology, 39(1), 59–65. https://doi.org/10.3109/01480545.2015.1026972
Kopčeková, J., Kolesárová, A., Gažarová, M., Lenártová, P., Mrázová, J., & Kolesárová, A. (2017). Effect of short-term consumption bitter apricot seeds on the body composition in healthy population. Potravinarstvo, 11(1), 151–155. https://doi.org/10.5219/718
Kovacikova, E., Kovacik, A., Halenar, M., Tokarova, K., Chrastinova, L., Ondruska, L., Jurcik, R., Kolesar, E., Valuch, J., & Kolesarova, A. (2019). Potential toxicity of cyanogenic glycoside amygdalin and bitter apricot seed in rabbits-Health status evaluation. Journal of Animal Physiology and Animal Nutrition, 103(2), 695–703. https://doi.org/10.1111/jpn.13055
Kovacova, V., Sarocka, A., Blahova, J., Sranko, P., Omelka, R., Galbavy, D., Kolesarova, A., & Martiniakova, M. (2020). Long-term peroral administration of bitter apricot seeds influences cortical bone microstructure of rabbits. Journal of Animal Physiology and Animal Nutrition, 104(1), 362–370. https://doi.org/10.1111/jpn.13229
Laoudy, A., Marnia, C., Anne, P. N., Siguret, V., Curis, E., & Nicolis, I. (2016). Vérification de méthode: exemple de la mesure du TQ/TP/INR au laboratoire d'hé-matologie de Lariboisière sur deux analyseurs STAGO «STAR»: l'INR est-il un paramètre robuste?. Acta Discipulorum Academiae Medicamentariae artis, (1), 15-21.
Leboffe, L., di Masi, A., Trezza, V., Pasquadibisceglie, A., Macari, G., Polticelli, F., & Ascenzi, P. (2020). Neonicotinoid trapping by the FA1 site of human serum albumin. IUBMB Life, 72(4), 716–723. https://doi.org/10.1002/iub.2173
Li, K., Yang, W., Li, Z., Jia, W., Li, J., Zhang, P., & Xiao, T. (2016). Bitter apricot essential oil induces apoptosis of human HaCaT keratinocytes. International Immunopharmacology, 34, 189–198. https://doi.org/10.1016/j.intimp.2016.02.019
Minaiyan, M., Ghannadi, A., Asadi, M., Etemad, M., & Mahzouni, P. (2014). Anti-inflammatory effect of Prunus armeniaca L.(Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Research in Pharmaceutical Sciences, 9(4), 225–231.
Moradi, B., Heidari-Soureshjani, S., Asadi-Samani, M., & Yang, Q. (2017). A systematic review of phytochemical and phytotherapeutic characteristics of bitter almond. International Journal of Pharmaceutical and Phytopharmacological Research, 7, 1–9.
Okada, Y., & Okada, M. (2013). Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons. Journal of Pharmacy & Bioallied Sciences, 5(2), 141–147. https://doi.org/10.4103/0975-7406.111819
Omer, H. A. A., Ahmed, S. M., Abedo, A. A., EL-Nomeary, Y. A. A., Nasr, S. M., & Nassar, S. A. (2020). Incorporation apricot seed kernel as untraditional source of protein in rabbit rations. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-020-00292-1
Omirou, M., Vryzas, Z., Papadopoulou-Mourkidou, E., & Economou, A. (2009). Dissipation rates of iprodione and thiacloprid during tomato production in greenhouse. Food Chemistry, 116(2), 499–504. https://doi.org/10.1016/j.foodchem.2009.03.007
Pang, S., Lin, Z., Zhang, W., Mishra, S., Bhatt, P., & Chen, S. (2020). Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Frontiers in Microbiology, 11, 868. https://doi.org/10.3389/fmicb.2020.00868
Piaton, E., Fabre, M., Goubin-Versini, I., Bretz-Grenier, M.-F., Courtade-Saïdi, M., Vincent, S., Belleannée, G., Thivolet, F., Boutonnat, J., Debaque, H., Fleury-Feith, J., Vielh, P., Cochand-Priollet, B., pour la Société française de cytologie clinique (SFCC), Egelé, C., Bellocq, J.-P., Michiels, J.-F., & pour l’Association française d’assurance qualité en anatomie et cytologie pathologiques (AFAQAP). (2015). Recommandations techniques et règles de bonne pratique pour la coloration de May-Grünwald-Giemsa : revue de la littérature et apport de l’assurance qualité. Annales de Pathologie, 35(4), 294–305. https://doi.org/10.1016/j.annpat.2015.05.019
Qin, F., Yao, L., Lu, C., Li, C., Zhou, Y., Su, C., Chen, B., & Shen, Y. (2019). Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca Sibirica L. Lam) kernel skins. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 129, 354–364. https://doi.org/10.1016/j.fct.2019.05.007
Schaafsma, A., Limay-Rios, V., Baute, T., Smith, J., & Xue, Y. (2015). Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario. PloS One, 10(2), e0118139. https://doi.org/10.1371/journal.pone.0118139
Schwarzbacherová, V., Wnuk, M., Deregowska, A., Holečková, B., & Lewinska, A. (2019). In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 61(104654), 104654. https://doi.org/10.1016/j.tiv.2019.104654
Şekeroğlu, V., Karabıyık, A., & Şekeroğlu, Z. A. (2020). Co-exposure to deltamethrin and thiacloprid induces cytotoxicity and oxidative stress in human lung cells. Toxicology and Industrial Health, 36(11), 916–924. https://doi.org/10.1177/0748233720964367
Sekeroglu, V., Sekeroglu, Z. A., & Demirhan, E. (2014). Effects of commercial formulations of deltamethrin and/or thiacloprid on thyroid hormone levels in rat serum. Toxicology and Industrial Health, 30(1), 40–46. https://doi.org/10.1177/0748233712448114
Singla, S., & Sandhu, H. S. (2015). Alterations in hematological profile of experimentally induced subchronic thiacloprid toxicosis in Gallus domesticus. Toxicology International, 22(1), 147–151. https://doi.org/10.4103/0971-6580.172281
Stang, L. J., & Mitchell, L. G. (2013). Fibrinogen. Methods in Molecular Biology (Clifton, N.J.), 992, 181–192. https://doi.org/10.1007/978-1-62703-339-8_14
Verebová, V., Želonková, K., Holečková, B., & Staničová, J. (2019). The effect of neonicotinoid insecticide thiacloprid on the structure and stability of DNA. Physiological Research, 68(Suppl 4), S459–S466. https://doi.org/10.33549/physiolres.934385
Vivek, R., & Jain, S. K. (2020). Ameliorative effect of resveratrol against thiacloprid induced acute and subacute toxicity in rats: Liver markers, renal markers and total protein. The Pharma Innovation Journal, 2020(2), 254–259.
Zamora, A. N., Watkins, D. J., Peterson, K. E., Téllez-Rojo, M. M., Hu, H., Meeker, J. D., Cantoral, A., Mercado-García, A., & Jansen, E. C. (2022). Prenatal maternal pesticide exposure in relation to sleep health of offspring during adolescence. Environmental Research, 204(Pt A), 111977 https://doi.org/10.1016/j.envres.2021.111977

Authors

Dounia Djellal
douniadjellal1994@gmail.com (Primary Contact)
Mohamed Kebieche
Author Biography

Mohamed Kebieche, Department of Microbiology and Biochemistry, Faculty of Life and Natural Science, University of Batna2, Route de Constantine, 05078, Fesdis, Batna

Faculty of Life and Natural Science/Department of Microbiology and Biochemistry

Djellal, D., & Kebieche, M. (2025). Evaluation of Hematopoietic and Immune Toxicity in First-Generation (G1) Rats Following Maternal Thiacloprid Exposure During Gestation and Lactation, and the Protective Potential of Bitter Apricot Kernel Extract. The North African Journal of Food and Nutrition Research, 9(19), 234–248. https://doi.org/10.51745/najfnr.9.19.234-248

Article Details

Received 2024-11-15
Accepted 2025-05-03
Published 2025-06-12