The Impact of Black Chokeberry (Aronia melanocarpa) on Gut Microbiota and Human Health: Systematic Review and Meta-analysis of Randomized Controlled Trials in Humans
Abstract
Background: Aronia melanocarpa, commonly known as chokeberry, is a fruit experiencing increasing cultivation and recognition due to its health-promoting properties. Its primary bioactive components are (poly)phenols, which are recognized for their crucial role in modulating the intestinal microbiota and exerting beneficial effects on human health.
Aims: This study aimed to systematically synthesize and critically evaluate the findings of randomized clinical trials investigating the impact of Aronia melanocarpa consumption on the modulation of gut microbiota composition and its metabolism-mediated physiological consequences in human subjects.
Methods: Randomized controlled trials published in English were considered for inclusion. Comprehensive searches were conducted across the Cochrane Library, Scopus, PubMed/MEDLINE, and Web of Science databases up to October 20, 2024. A systematic evaluation of gut microbiota parameters was performed. For secondary metabolite levels, biochemical markers, and cardiovascular risk parameters, a meta-analysis utilizing a mean effect model was conducted.
Results: Four articles, collectively involving 200 participants, met the inclusion criteria for this systematic review. Of these, three articles were subsequently incorporated into the meta-analysis. Consumption of Aronia melanocarpa intervention periods ranging from 4 to12 weeks did not yield significant differences in the α-diversity or β-diversity of the gut microbiota. However, increased levels of specific bacterial genera and species, including Intestinimonas butyriciproducens, Lawsonibacter asaccharolyticus, Bacteroides xylanisolvens, Bacteroides, Anaerostipes, Butyricimonas faecihominis, were observed in individuals consuming Aronia capsules for 12 weeks. Furthermore, Aronia melanocarpa consumption significantly increased non-flavonoid polyphenol stilbenes by a mean difference of 0.11 (95% CI: 0.03, 0.20, p = 0.010) compared to control groups. No significant differences were detected in vascular function or fasting plasma glucose levels.
Conclusions: The included studies indicate that Aronia melanocarpa exerts positive effects on the gut microbiota. Notably, interventions involving Aronia melanocarpa consumption for 12 weeks and those with high polyphenol content appeared to be more effective in modulating the microbiota. However, no statistically significant beneficial impact on broader health parameters was identified in this meta-analysis. This outcome is likely attributable to variations in dosage, product type, intervention durations, participant characteristics, and the specific final measurements employed across the included studies.
Keywords: Aronia melanocarpa; Gut function; Gut symptoms; Meta-analysis; Microbiota; Systematic review.
Full text article
References
Benbouguerra, N., Hornedo-Ortega, R., Garcia, F., El Khawand, T., Saucier, C., & Richard, T. (2021). Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends in Food Science & Technology, 112, 362–381. https://doi.org/10.1016/j.tifs.2021.03.060
Borghi, C., Tsioufis, K., Agabiti-Rosei, E., Burnier, M., Cicero, A. F. G., Clement, D., Coca, A., Desideri, G., Grassi, G., Lovic, D., Lurbe, E., Kahan, T., Kreutz, R., Jelakovic, B., Polonia, J., Redon, J., Van De Borne, P., & Mancia, G. (2020). Nutraceuticals and blood pressure control: a European Society of Hypertension position document. Journal of Hypertension, 38(5), 799–812. https://doi.org/10.1097/HJH.0000000000002353
Canani, Roberto Berni, Costanzo, M. D., Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology: WJG, 17(12), 1519–1528. https://doi.org/10.3748/wjg.v17.i12.1519
Cassidy, A., O’Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J. P., Curhan, G., & Rimm, E. B. (2011). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition, 93(2), 338–347. https://doi.org/10.3945/ajcn.110.006783
Chamberlin, M. L., Peach, J. T., Wilson, S. M. G., Miller, Z. T., Bothner, B., Walk, S. T., Yeoman, C. J., & Miles, M. P. (2024). Polyphenol-rich Aronia melanocarpa fruit beneficially impact cholesterol, glucose, and serum and gut metabolites: A randomized clinical trial. Foods (Basel, Switzerland), 13(17), 2768. https://doi.org/10.3390/foods13172768
Cicero, A. F. G., Grassi, D., Tocci, G., Galletti, F., Borghi, C., & Ferri, C. (2019). Nutrients and nutraceuticals for the management of high normal blood pressure: An evidence-based consensus document. High Blood Pressure & Cardiovascular Prevention: The Official Journal of the Italian Society of Hypertension, 26(1), 9–25. https://doi.org/10.1007/s40292-018-0296-6
Cicero, A. F. G., Veronesi, M., & Fogacci, F. (2021). Dietary intervention to improve blood pressure control: Beyond salt restriction. High Blood Pressure & Cardiovascular Prevention: The Official Journal of the Italian Society of Hypertension, 28(6), 547–553. https://doi.org/10.1007/s40292-021-00474-6
Costa, J. R., Amorim, M., Vilas-Boas, A., Tonon, R. V., Cabral, L. M. C., Pastrana, L., & Pintado, M. (2019). Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food & Function, 10(4), 1856–1869. https://doi.org/10.1039/c8fo02534g
Creedon, A. C., Hung, E. S., Berry, S. E., & Whelan, K. (2020). Nuts and their effect on gut Microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients, 12(8), 2347. https://doi.org/10.3390/nu12082347
Cueva, C., Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., González-Paramás, A. M., Santos-Buelga, C., Bartolomé, B., & Moreno-Arribas, M. V. (2017). An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules (Basel, Switzerland), 22(1), 99. https://doi.org/10.3390/molecules22010099
Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical Pharmacology, 139, 82–93. https://doi.org/10.1016/j.bcp.2017.04.033
Finotello, F., Mastrorilli, E., & Di Camillo, B. (2018). Measuring the diversity of the human microbiota with targeted next-generation sequencing. Briefings in Bioinformatics, 19(4), 679–692. https://doi.org/10.1093/bib/bbw119
Gil-Sánchez, I., Cueva, C., Sanz-Buenhombre, M., Guadarrama, A., Moreno-Arribas, M. V., & Bartolomé, B. (2018). Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 68, 41–52. https://doi.org/10.1016/j.jfca.2017.05.005
Gurčík, Ľ., Bajusová, Z., Ladvenicová, J., Palkovič, J., & Novotná, K. (2023). Cultivation and processing of modern superfood—Aronia melanocarpa (black chokeberry) in Slovak Republic. Agriculture, 13(3), 604. https://doi.org/10.3390/agriculture13030604
Higgins, J., (2011). Cochrane handbook for systematic reviews of interventions. Cochrane.org. Retrieved 10 October 2024)
Istas, G., Wood, E., Le Sayec, M., Rawlings, C., Yoon, J., Dandavate, V., Cera, D., Rampelli, S., Costabile, A., Fromentin, E., & Rodriguez-Mateos, A. (2019). Effects of aronia berry (poly)phenols on vascular function and gut microbiota: a double-blind randomized controlled trial in adult men. The American Journal of Clinical Nutrition, 110(2), 316–329. https://doi.org/10.1093/ajcn/nqz075
Jurendić, T., & Ščetar, M. (2021). Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants (Basel, Switzerland), 10(7), 1052. https://doi.org/10.3390/antiox10071052
Jurikova, T., Mlcek, J., Skrovankova, S., Sumczynski, D., Sochor, J., Hlavacova, I., Snopek, L., & Orsavova, J. (2017). Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules (Basel, Switzerland), 22(6). https://doi.org/10.3390/molecules22060944
King, E. S., & Bolling, B. W. (2020). Composition, polyphenol bioavailability, and health benefits of aronia berry: a review. Journal of Food Bioactives: An Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 11, 13–30. https://doi.org/10.31665/jfb.2020.11235
Lackner, S., Mahnert, A., Moissl-Eichinger, C., Madl, T., Habisch, H., Meier-Allard, N., Kumpitsch, C., Lahousen, T., Kohlhammer-Dohr, A., Mörkl, S., Strobl, H., & Holasek, S. (2024). Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. Microbiome, 12(1), 49. https://doi.org/10.1186/s40168-024-01774-4
Le Sayec, M., Xu, Y., Laiola, M., Gallego, F. A., Katsikioti, D., Durbidge, C., Kivisild, U., Armes, S., Lecomte, M., Fança-Berthon, P., Fromentin, E., Plaza Oñate, F., Cruickshank, J. K., & Rodriguez-Mateos, A. (2022). The effects of Aronia berry (poly)phenol supplementation on arterial function and the gut microbiome in middle aged men and women: Results from a randomized controlled trial. Clinical Nutrition (Edinburgh, Scotland), 41(11), 2549–2561. https://doi.org/10.1016/j.clnu.2022.08.024
Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J., & Martinez-Medina, M. (2017). Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME Journal, 11(4), 841–852. https://doi.org/10.1038/ismej.2016.176
Lotti, S., Dinu, M., Colombini, B., Amedei, A., & Sofi, F. (2023). Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 33(8), 1490–1500. https://doi.org/10.1016/j.numecd.2023.05.009
Mazmanian, S. K., Round, J. L., & Kasper, D. L. (2008). A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453(7195), 620–625. https://doi.org/10.1038/nature07008
Mompeo, O., Spector, T. D., Matey Hernandez, M., Le Roy, C., Istas, G., Le Sayec, M., Mangino, M., Jennings, A., Rodriguez-Mateos, A., Valdes, A. M., & Menni, C. (2020). Consumption of Stilbenes and flavonoids is linked to reduced risk of obesity independently of fiber intake. Nutrients, 12(6), 1871. https://doi.org/10.3390/nu12061871
Muñoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., Duncan, S. H., Flint, H. J., & Leclerc, M. (2011). Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species: Modelling butyrate production by colonic bacterial species. FEMS Microbiology Ecology, 76(3), 615–624. https://doi.org/10.1111/j.1574-6941.2011.01085.x
Nash, V., Ranadheera, C. S., Georgousopoulou, E. N., Mellor, D. D., Panagiotakos, D. B., McKune, A. J., Kellett, J., & Naumovski, N. (2018). The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Food Research International (Ottawa, Ont.), 113, 277–287. https://doi.org/10.1016/j.foodres.2018.07.019
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. https://doi.org/10.1136/bmj.n71
Pozuelo, M. J., Agis-Torres, A., Hervert-Hernández, D., Elvira López-Oliva, M., Muñoz-Martínez, E., Rotger, R., & Goñi, I. (2012). Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. Journal of Food Science, 77(2), H59-62. https://doi.org/10.1111/j.1750-3841.2011.02520.x
Quesada-Vázquez, S., Eseberri, I., Les, F., Pérez-Matute, P., Herranz-López, M., Atgié, C., Lopez-Yus, M., Aranaz, P., Oteo, J. A., Escoté, X., Lorente-Cebrian, S., Roche, E., Courtois, A., López, V., Portillo, M. P., Milagro, F. I., & Carpéné, C. (2024). Polyphenols and metabolism: from present knowledge to future challenges. Journal of Physiology and Biochemistry, 80(3), 603–625. https://doi.org/10.1007/s13105-024-01046-7
Ren, Y., Frank, T., Meyer, G., Lei, J., Grebenc, J. R., Slaughter, R., Gao, Y. G., & Kinghorn, A. D. (2022). Potential benefits of black chokeberry (Aronia melanocarpa) fruits and their constituents in improving human health. Molecules (Basel, Switzerland), 27(22), 7823. https://doi.org/10.3390/molecules27227823
Rodríguez-Costa, S., Cardelle-Cobas, A., Roca-Saavedra, P., Porto-Arias, J. J., Miranda, J. M., & Cepeda, A. (2018). In vitro evaluation of the prebiotic effect of red and white grape polyphenolic extracts. Journal of Physiology and Biochemistry, 74(1), 101–110. https://doi.org/10.1007/s13105-017-0573-1
Sweeney, M., Burns, G., Sturgeon, N., Mears, K., Stote, K., & Blanton, C. (2022). The effects of berry polyphenols on the gut Microbiota and blood pressure: A systematic review of randomized clinical trials in humans. Nutrients, 14(11), 2263. https://doi.org/10.3390/nu14112263
Taheri, R., Connolly, B. A., Brand, M. H., & Bolling, B. W. (2013). Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of Agricultural and Food Chemistry, 61(36), 8581–8588. https://doi.org/10.1021/jf402449q
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414
Wilson, S. M. G., Peach, J. T., Fausset, H., Miller, Z. T., Walk, S. T., Yeoman, C. J., Bothner, B., & Miles, M. P. (2023). Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Frontiers in Nutrition, 10, 1244692. https://doi.org/10.3389/fnut.2023.1244692
Authors
Copyright (c) 2025 Berrak Basturk, Zeynep Koc Ozerson, Aysu Yildiz Karaahmet, Kardelen Busra Ege Gunduz, Sumeyye Bora

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.