Ameliorative Effects of Citrus aurantium Juice on Metabolic Disorders Induced by Trans Fatty Acid-Rich Amalgam in Wistar rats

Amina Tires (1) , Mustapha Diaf (2) , Bakhta Bouzouira (3) , Meghit Boumediene Khaled (4)
(1) Djillali Liabes University of Sidi Bel abbes, Faculty of Natural and Life Sciences, Department of Biology. Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NUPABS). BO. 89 Sidi-Bel-Abbes, 22000 , Algeria
(2) Djillali Liabes University of Sidi Bel abbes, Faculty of Natural and Life Sciences, Department of Biology. Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (Lab-NUPABS). BO. 89 Sidi-Bel-Abbes, 22000 , Algeria
(3) 2 Ahmed Medaghri Public Hospital Establishment of Saida, Algeria R5H5+QW9, Saïda, 20000 , Algeria
(4) , Algeria

Abstract

Background: Consumption of Trans Fatty acids (TFA) has been correlated with an increased risk of obesity and the development of type 2 diabetes mellitus (T2DM).


Aims: This study aimed to assess the anti-obesogenic and anti-diabetic effect of Citrus aurantium (CA) juice in Wistar rats following the administration of a Trans fatty acids rich diet.


Methods: Male Wistar rats were administered CA juice after induction of hyperlipidemia using escalating concentrations of a fatty product. The fatty acid methyl ester profile of the fat amalgam was determined using gas chromatography-mass spectrometry (GC-MS). Phytochemical analysis of the CA juice was conducted employing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Furthermore, the antioxidant activity of the juice was assessed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. TFA-induced metabolic disorders were assessed by measuring various anthropometric parameters (Body Mass Index BMI, Lee Index, Ponderal Index PI, Waist to Length Ratio WLR, Adiposity Index AI). Glycated hemoglobin HbA1c by nephelometry. Plasma pancreatic lipase activity, aspartate aminotransferase (GOT), and alanine aminotransferase (GPT) levels using biochemical kits. Additionally, liver tissues were microscopically examined after staining with hematoxylin and eosin (H&E).


Results: Obesogenic and diabetogenic effects were observed in rats receiving the high-fat amalgam. GC-MS analysis of the fatty product revealed the predominant presence of the trans fatty acid octadecadienoic acid. Qualitative UPLC-MS-MS identification of the CA juice highlighted the presence of 13 bioactive compounds, with epicatechin and quercetin being the most abundant. The juice exhibited significant antioxidant activity in the DPPH assay with an IC50 value of 1.125 µg/mL. Analysis of anthropometric parameters demonstrated a significant anti-obesogenic effect in animals treated with CA juice. Conversely, the administration of the fatty amalgam resulted in significant disturbances in the tested biochemical parameters. Notably, the administration of CA juice significantly contributed to the re-establishment of lipase expression, HbA1c levels, total cholesterol levels, GOT, and GPT. Histological examination of liver sections stained with Hematoxylin and Eosin revealed that the high-fat amalgam induced hepatic steatosis and pancreatic beta-cell disappearance. However, CA juice was able to decrease the extent of hepatic steatosis.


Conclusions: The administration of Citrus aurantium juice to rats demonstrated significant effectiveness in counteracting TFA- induced metabolic disorders.


Keywords: Trans Fatty Acids; Citrus aurantium; Obesity.

Full text article

Generated from XML file

References

Abraham, E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 52(9), 5790–5798. https://doi.org/10.1007/s13197-014-1704-0
Agbaje, A. O., (2024). Waist-to-height ratio detects fat obesity in children and adolescents significantly better than BMI. Pediatric Research. https://doi.org/10.1038/s41390-024-03112-8.
Akinlade, O. M., & Oladokun, R. E. (2024). Correlation of alanine aminotransferase levels and a histological diagnosis of steatohepatitis with ultrasound-diagnosed metabolic-associated fatty liver disease in patients from a centre in Nigeria. BMC Gastroenterology, 24(1), 147. https://doi.org/10.1186/s12876-024-03237-4
Albright, A. L., Johnson, P. R., Greene, S., & Stern, J. S. (1994). Use of glycated hemoglobin to assess glycemic control in Wistar diabetic fatty rats and Zucker fatty rats. Obesity Research, 2(6), 535-539. https://doi.org/10.1002/j.1550-8528.1994.tb00102.x
de Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schünemann, H., Beyene, J., & Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 351, h3978. https://doi.org/10.1136/bmj.h3978
Arika, M. W. (2019). Anti-obesity, cognitive enhancing, neurobehavioral, antioxidant effects and phytochemical profile of dichloromethane leaf extract of Gnidia glauca (Fresen) (Doctoral dissertation, Kenyatta University). Kenyatta University Institutional Repository. https://ir-library.ku.ac.ke/server/api/core/bitstreams/2a2d2ca4-87a5-4578-841c-7fa0799777fc/content
Aslan, M. N., Sukan-Karaçağıl, B., & Acar-Tek, N. (2023). Roles of citrus fruits on energy expenditure, body weight management, and metabolic biomarkers: a comprehensive review. Nutrition Reviews, 82(9), 1292–1307. https://doi.org/10.1093/nutrit/nuad116
Axen, K. V., Dikeakos, A., & Sclafani, A. (2003). High dietary fat promotes syndrome X in nonobese rats. The Journal of Nutrition, 133(7), 2244–2249. https://doi.org/ 10.1093/jn/133.7.2244
Baioumi, A. Y. A. A. (2019). Comparing Measures of Obesity: Waist Circumference, Waist-Hip, and Waist-Height Ratios. In V. R. Preedy (Ed.), Nutrition in the Prevention and Treatment of Abdominal Obesity (2nd ed., pp. 27-38). Elsevier. https://doi.org/10.1016/B978-0-12-816093-0.00003-3
Bancroft, J. D., Suvarna, K. S., & Layton, C. (2019). Bancroft’s theory and practice of histological techniques (8th ed.). Churchill Livingstone/Elsevier. https://doi.org/10.1016/C2015-0-00143-5
Beck, E., Bittl, A., Koller, S., Merkle, E., Katalinic, A., Jäger, W., & Lang, N. (1999). Erfassung der fetalen Retardierung mittels Ponderal Index und Gewichtsperzentilen. Geburtshilfe und Frauenheilkunde, 59(2), 62–69. https://doi.org/10.1055/s-1999-14162
Benaicheta, N., Labbaci, F. Z., Bouchenak, M., & Boukortt, F. O. (2015). Les protéines de sardine atténuent l'hyperglycémie et le stress oxydant chez le rat diabétique de type 2. Nutrition & Santé, 4(1), 6-15. Retrieved from https://doi.org/10.30952/ns.4.1.3
Benjamim, C. J. R., Júnior, F. W. S., Porto, A. A., Rocha, É. M. B., Santana, M. D., Garner, D. M., Valenti, V. E., & Bueno Júnior, C. R. (2022). Bitter Orange (Citrus aurantium L.) Intake Before Submaximal Aerobic Exercise Is Safe for Cardiovascular and Autonomic Systems in Healthy Males: A Randomized Trial. Frontiers in Nutrition, 9, 890388. https://doi.org/10.3389/fnut.2022.890388
Benzaid, C., Tichati, L., & Rouabhia, M. (2021). Effect of low concentration of Citrus aurantium L. essential oil on the virulence of Streptococcus mutans for mouthwash application. Antibiotics, 10(1), 54. https://doi.org/10.3390/antibiotics10010054
Bernardis, L. L. (1970). Prediction of carcass fat, water and lean body mass from Lee's 'nutritive ratio' in rats with hypothalamic obesity. Experientia, 26(7), 789–790. https://doi.org/10.1007/BF02232553
Bertola, A. (2018). Rodent models of fatty liver diseases. Liver Research, 2(1), 26–34. https://doi.org/10.1016/j.livres.2018.03.001
Blanc, M. H., Rhie, F. H., Dunn, P. J., & Soeldner, J. S. (1981). The determination of glycosylated hemoglobins in rats using high pressure liquid chromatography. Metabolism: Clinical and Experimental, 30(4), 317-322. https://doi.org/10.1016/0026-0495(81)90108-6
Boden, G. (2003). Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes, 111(3), 121‑124. https://doi.org/10.1055/s‑2003‑39781
Bouderbala, H., Kaddouri, H., Kheroua, O., & Saidi, D. (2016). Effet anti-obésogène du vinaigre de cidre de pomme chez le rat soumis à un régime hyperlipidique. Annales de Cardiologie et d'Angéiologie, 65(3), 208-213. https://doi.org/10.1016/j.ancard.2016.04.004
Bowman, L., Mafham, M., Wallendszus, K., Stevens, W., Buck, G., Barton, S., ... & Collins, R. (2018). Effects of n−3 Fatty Acid Supplements in Diabetes Mellitus. The New England Journal of Medicine, 379(16), 1540-1550. https://doi.org/10.1056/NEJMoa1804989
Brasnyó, P., Molnár, G. A., Mohás, M., Markó, L., Laczy, B., Cseh, J., Miklós, P. F., Merei, Á., Halmai, R., & Wittmann, I. (2011). Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. 1 British Journal of Nutrition, 106(3), 383–389. https://doi.org/10.1017/S0007114511000316
Bui, L. T., Nguyen, D. T., & Ambrose, P. J. (2006). Blood pressure and heart rate effects following a single dose of bitter orange. The Annals of Pharmacotherapy, 40(1), 53–57. https://doi.org/10.1345/aph.1G488
Bulotta, S., Celano, M., Lepore, S. M., Montalcini, T., Pujia, A., & Russo, D. (2014). Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: Focus on protection against cardiovascular and metabolic diseases. Journal of Translational Medicine, 12(1), 219. https://doi.org/10.1186/s12967-014-0219-9
Caldwell, S. H., & Crespo, D. M. (2004). The spectrum expanded: Cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. Journal of Hepatology, 40(4), 578–584. https://doi.org/10.1016/j.jhep.2004.02.013
Camara, A. (2014). Facteurs associés au mauvais contrôle glycémique dans une population de diabétiques de type 2 de l'Afrique Sub-saharienne (Doctoral dissertation, Université de Rennes 1). HAL Open Science. https://theses.hal.science/tel-01057231/
Chajès, V., Biessy, C., Ferrari, P., Romieu, I., Freisling, H., Huybrechts, I., Scalbert, A., Bueno de Mesquita, B., Romaguera, D., Gunter, M. J., Vineis, P., Hansen, C. P., Jakobsen, M. U., & Slimani, N. (2015). Plasma elaidic acid level as a biomarker of industrial trans fatty acids and risk of weight change: Report from the EPIC study. PLOS ONE, 10(2), e0118206. https://doi.org/10.1371/journal.pone.0118206
Cherif, J. K., M’Rabet, I., El Habiri, M., Abidi, R., & Albrecht-Gary, A.-M. (2006). Mesure de l’activité antiradicalaire du jus et des peaux d’oranges tunisiennes par le radical DPPH. Fruits, 61(2), 99–107. https://doi.org/10.1051/fruits:2006008
Crusell, M., Hansen, T. H., Nielsen, T., Allin, K. H., Ruhlemann, M. C., Damm, P., & Pedersen, O. (2017). Ponderal index at birth associates with later risk of gestational diabetes mellitus. Archives of Gynecology and Obstetrics, 296(2), 249–256. https://doi.org/10.1007/s00404-017-4427-4
Davidson, A., & Oxford University Press. (2014). The Oxford Companion to Food (3ᵉ éd.). Oxford University Press. https://books.google.dz/books?id=RL6LAwAAQBAJ https://doi.org/10.1093/acref/9780199677337.001.0001
De Cabo, R. F., & Mattson, M. P. (2021). Measures of food intake, body weight gain, and energy metabolism in mice. In R. de Cabo (Ed.), Animal Models for the Study of Human Disease (2nd ed., pp. 1–15). Springer. https://doi.org/10.1007/978-1-0716-2345-9_2
de Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schünemann, H., Beyene, J., & Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ, 351, h3978. https://doi.org/10.1136/bmj.h3978
Diepvens, K., Soenen, S., Steijns, J., Arnold, M., & Westerterp-Plantenga, M. (2007). Long-Term Effects of Consumption of a Novel Fat Emulsion in Relation to BodyWeight Management. International Journal of Obesity, 31(6), 942-949. https://doi.org/10.1038/sj.ijo.0803532
Divya, P. J., Jamuna, P., & Jyothi, L. A. (2016). Antioxidant properties of fresh and processed Citrus aurantium fruit. Cogent Food & Agriculture, 2(1), 1184119. https://doi.org/10.1080/23311932.2016.1184119
El Yazouli, L., Baslam, A., Laadraoui, J., Ait Laaradia, M., Aboufatima, R., Kibbou, A., El Amiri, M. A., Moubtakir, S., & Chait, A. (2024). Analgesic and anti-lithiasic effects of Moroccan Citrus aurantium flowers and fruit aqueous extracts. The Journal of Animal and Plant Sciences, 34(3), 584–595. https://doi.org/10.36899/JAPS.2024.3.0745
Ezeigwe, O. C., Ogbodo, U. C., Okwuenu, G. N., & Felicia, E. C. (2022). Acute and sub-chronic toxicological studies of Citrus aurantium fruit juice in Wistar rats. Journal of Advances in Medical and Pharmaceutical Sciences, 24(3), 8–17. https://doi.org/10.9734/jamps/2022/v24i330289
Fugh-Berman, A., & Myers, A. (2004). Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Experimental Biology and Medicine (Maywood), 229(8), 698–704. https://doi.org/10.1177/153537020422900802
Gandhi, G. R., Vasconcelos, A. B. S., Wu, D., Li, H., Antony, P. J., Li, H., Geng, F., Gurgel, R. Q., Narain, N., & Gan, R. Y. (2020). Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients, 12(10), 2907. https://doi.org/10.3390/nu12102907
Gao, M., Ma, Y., & Liu, D. (2013). Rutin suppresses palmitic acid-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharmaceutical Research, 30(11), 2940–2950. https://doi.org/10.1007/s11095-013-1125-1
Ghorbani, Z., Hekmatdoost, A., & Mirmiran, P. (2024). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. International Journal of Endocrinology and Metabolism, 12(4), e18081. https://doi.org/10.5812/ijem.18081
Girard, J. (2003). Rôle des acides gras libres dans la sécrétion et l’action de l’insuline : mécanismes de la lipotoxicité Role of free fatty acids in insulin secretion and action: Mechanisms of lipotoxicity. Médecine/Sciences, 19(8-9), 923–933. https://doi.org/10.1051/medsci/20031989827

Gonçalves, T. S. A., Vieira, E. M., Favetta, P. M., Betineli, L. M. S., Costa, L. S. O., Pinzan, D., Soares, A. A., & Germano, R. M. (2019). Effect of commercial extract of Citrus aurantium in obese rats induced by cafeteria diet. Brazilian Journal of Development, 5(10), 18966–18987. https://doi.org/10.34117/bjdv5n10-134
Gopal, J., Lee, S. H., & Lee, H. S. (2012). Hexane fraction of Citrus aurantium L. stimulates glucagon-like peptide-1 secretion in NCI-H716 cells. Journal of Ethnopharmacology, 141(1), 1–6. https://doi.org/10.1016/j.jep.2012.03.029
Guerra-Ruiz, A. R., Casals, G., Iruzubieta, P., Lalana, M., Leis, A., López, R. M., Crespo, J., & Morales-Ruiz, M. (2021). Biochemical assessment of metabolic associated fatty liver disease. Advances in Laboratory Medicine, 2(2), 199–208. https://doi.org/10.1515/almed-2021-0009
Hansen, C. P., Berentzen, T. L., Østergaard, J. N., Dahm, C. C., Hellgren, L. I., Schmidt, E. B., Tjønneland, A., Sørensen, T. I. A., Overvad, K., & Jakobsen, M. U. (2014). Adipose tissue trans-fatty acids and changes in body weight and waist circumference. British Journal of Nutrition, 111(7), 12831291. https://doi.org/10.1017/S0007114513003747
Haraoui, N., Benouchenne, D., & Benabdeli, K. (2020). In-vitro antioxidant and antimicrobial activities of some varieties of citrus grown in Algeria. The Journal of Animal & Plant Sciences, 30(2), 421-431. https://doi.org/10.1007/s13596-019-00379-9
Hempe, J., Elvert, R., Schmidts, H.-L., Kramer, W., & Herling, A. W. (2012). Appropriateness of the Zucker Diabetic Fatty rat as a model for diabetic microvascular late complications. Laboratory Animals, 46(1), 32–39. https://doi.org/10.1258/la.2011.010165
Horvath, T. L. (2012). Neuroendocrine regulation of food intake and body weight. In G. Fink, D. W. Pfaff, & J. E. Levine (Eds.), Handbook of neuroendocrinology (pp. 145–167). Academic Press. https://doi.org/10.1016/B978-0-12-375097-6.10014-9
Hua, Y., Fan, R., Zhao, L., Tong, C., Qian, X., Zhang, M., Xiao, R., & Ma, W. (2020). Trans-fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. British Journal of Nutrition, 124(12), 1251–1263. https://doi.org/10.1017/S0007114520001841
Ibrahim, A., Natrajan, S., & Ghafoorunissa, R. (2005). Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism, 54(2), 240–246. https://doi.org/10.1016/j.metabol.2004.08.019
Jabri Karoui, I., & Marzouk, B. (2013). Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. BioMed Research International, 2013, 345415. https://doi.org/10.1155/2013/345415
Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2008). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 92(2), 323–327. https://doi.org/10.1016/S0308-8146(00)00298-3
Kacániová, M., Kľučková, L., & Kováčová, E. (2020). Antioxidant and antimicrobial activities of essential oils from Citrus aurantium L. and Citrus sinensis L. peels. Antioxidants, 9(11), 1150. https://doi.org/ https://doi.org/10.3390/molecules25173956
Kang, C., Lee, H.-J., & Kim, M. (2021). Oleanolic acid induces lipolysis and antioxidative activity in 3T3-L1 adipocytes. Food Science and Technology Research, 27(3), 511–519. https://doi.org/10.3136/fstr.27.511
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
Kwon, E.-Y., & Choi, M.-S. (2018). Luteolin targets the Toll-like receptor signaling pathway in prevention of hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. Nutrients, 10(10), 1415. https://doi.org/10.3390/nu10101415
Li, J., Chen, S., Shi, R., Huang, Y., Kang, H., Zhang, J.,& Lu, Z. (2021). Biopsy-free in vivo virtual histology of skin using deep learning. Light: Science & Applications, 10(1), 233. https://doi.org/10.1038/s41377-021-00674-8
Li, W., Zeng, H., Xu, M., Huang, C., Tao, L., Li, J., Zhang, T., Chen, H., Xia, J., Li, C., & Li, X. (2021). Oleanolic acid improves obesity‑related inflammation and insulin resistance by regulating macrophages activation. Frontiers in Pharmacology, 12, 697483. https://doi.org/10.3389/fphar.2021.697483
Li, X., Xu, Y., Shen, S., Sun, L., Yang, J., He, J., & Deng, X. (2017). Transcription factor CitERF71 activates the monoterpene synthesis of E-geraniol in sweet orange (Citrus sinensis). Journal of Experimental Botany, 68(17), 4929–4938. https://doi.org/10.1093/jxb/erx316
Lo, K., Huang, Y.-Q., Shen, G., Huang, J.-Y., Liu, L., Yu, Y.-L., Chen, C.-L., & Feng, Y.-Q. (2021). Effects of waist to height ratio, waist circumference, body mass index on the risk of chronic diseases, all-cause, cardiovascular and cancer mortality. Postgraduate Medical Journal, 97(1147), 306–311. https://doi.org/10.1136/postgradmedj-2020-137542
Maksoud, S., Abdel-Massih, R. M., Rajha, H. N., Louka, N., Chemat, F., Barba, F. J., & Debs, E. (2021). Citrus aurantium L. active constituents, biological effects, and extraction methods: An updated review. Molecules, 26(19), 5832. https://doi.org/10.3390/molecules26195832
Mannucci, C., Calapai, F., Cardia, L., Inferrera, G., D'Arena, G., Di Pietro, M., Navarra, M., Gangemi, S., Ventura Spagnolo, E., & Calapai, G. (2018). Clinical pharmacology of Citrus aurantium and Citrus sinensis for the treatment of anxiety. Evidence-Based Complementary and Alternative Medicine, 2018, Article 3624094. https://doi.org/10.1155/2018/3624094
Mazidi, M., Katsiki, N., Mikhailidis, D. P., & Banach, M. (2018). Link between plasma trans-fatty acid and fatty liver is moderated by adiposity. International Journal of Cardiology, 272, 316–322. https://doi.org/10.1016/j.ijcard.2018.07.061
Micha, R., Khatibzadeh, S., Shi, P., Fahimi, S., Lim, S., Andrews, K. G., Mozaffarian, D. (2014). Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ, 348, g2272. https://doi.org/10.1136/bmj.g2272
Mohajan, D., & Mohajan, H. K. (2023). Ponderal index: An important anthropometric indicator for physical growth. Journal of International Medical Research, 6, Article 630. https://doi.org/10.56397/jimr/2023.06.03
Mounien, L., Tourniaire, F., & Landrier, J.-F. (2019). Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients, 11(7), 1562. https://doi.org/10.3390/nu11071562
Mozaffarian, D., Aro, A., & Willett, W. C. (2009). Health effects of trans-fatty acids: Experimental and observational evidence. European Journal of Clinical Nutrition, 63(Suppl. 2), S5–S21. https://doi.org/10.1038/sj.ejcn.1602973
Mulvihill, E. E., Assini, J. M., Sutherland, B. G., DiMattia, A. S., Khami, M., Koppes, J. B., Sawyez, C. G., Whitman, S. C., & Huff, M. W. (2010). Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density-lipoprotein receptor-null mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(4), 742-748. https://doi.org/10.1161/ATVBAHA.109.201095
Nagisa, Y., Kato, K., Watanabe, K., Murakoshi, H., Odaka, H., Yoshikawa, K., & Sugiyama, Y. (2003). Changes in glycated haemoglobin levels in diabetic rats measured with an automatic affinity HPLC. Clinical and Experimental Pharmacology and Physiology, 30(10), 752–758. https://doi.org/10.1046/j.1440-1681.2003.03902.x
Novelli, E. L. B., Diniz, Y. S., Galhardi, C. M., Ebaid, G. M. X., Rodrigues, H. G., Mani, F., Fernandes, A. A. H., Cicogna, A. C., & Novelli Filho, J. L. V. B. (2007). Anthropometrical parameters and markers of obesity in rats. Laboratory Animals, 41(1), 111–119. https://doi.org/10.1258/002367707779399518
Odegaard, A. O., & Pereira, M. A. (2006). Trans fatty acids, insulin resistance, and type 2 diabetes. Nutrition Reviews, 64(8), 364–372. https://doi.org/10.1301/nr.2006.aug.364-372
Oh, Y. S., Bae, G. D., Baek, D. J., Park, E.-Y., & Jun, H.-S. (2018). Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Frontiers in Endocrinology, 9, 384. https://doi.org/10.3389/fendo.2018.00384
Oteng, A. B., & Kersten, S. (2020). Mechanisms of action of trans fatty acids. Advances in Nutrition, 11(3), 697–708. https://doi.org/10.1093/advances/nmz125
Ouguelmane, A., & Houichiti, R. (2020). Étude des activités biologiques d’une plante aromatique médicinale locale "Citrus aurantium" Study of the biological activities of a local medicinal aromatic plant "Citrus aurantium" Master’s thesis, Ghardaïa University. ThesesAlgerie. https://dspace.univ-ghardaia.edu.dz/xmlui/handle/123456789/1043
Pimenta, F. C. F., Alves, M. F., Pimenta, M. B. F., Melo, S. A. L., Almeida, A. A. F., Leite, J. R., Pordeus, L. C. M., & Diniz, M. F. F. M. (2016). Anxiolytic effect of Citrus aurantium L. on patients with chronic myeloid leukemia. Phytotherapy Research, 30(4), 613–617. https://doi.org/10.1002/ptr.5566
Postic, C., & Girard, J. (2008). Contribution de la synthèse de novo des acides gras à la stéatose hépatique et à la résistance à l'insuline : leçons tirées de modèles murins génétiquement modifiés Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically modified mouse models. Journal of Clinical Investigation, 118(3), 829–838. https://doi.org/10.1172/JCI34275
Reaven, G. M. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595–1607. https://doi.org/10.2337/diab.37.12.1595
Restrepo, B. J., & Rieger, M. (2016). Denmark's policy on artificial trans fat and cardiovascular disease. American Journal of Preventive Medicine, 50(1), 69–76. https://doi.org/10.1016/j.amepre.2015.06.018
Salau, V. F., Erukainure, O. L., Ijomone, O. M., & Islam, M. S. (2022). Caffeic acid regulates glucose homeostasis and inhibits purinergic and cholinergic activities while abating oxidative stress and dyslipidaemia in fructose-streptozotocin-induced diabetic rats. Journal of Pharmacy and Pharmacology, 74(8), 1061–1070. https://doi.org/10.1093/jpp/rgac021
Sanneur, K., Leksawasdi, N., Sumonsiri, N., Techapun, C., Taesuwan, S., Nunta, R., & Khemacheewakul, J. (2023). Inhibitory effects of saponin-rich extracts from Pouteria cambodiana against digestive enzymes α-glucosidase and pancreatic lipase. Foods, 12(20), 3738. https://doi.org/10.3390/foods12203738
Santos, M. C., & Gonçalves, É. C. (2016). Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour. Scientia Agropecuaria, 7(1), 1–10. https://doi.org/10.17268/sci.agropecu.2016.01.01
Saravanan, N., Haseeb, A., Ehtesham, N. Z., & Ghafoorunissa. (2005). Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. European Journal of Endocrinology, 153(1), 159–165. https://doi.org/10.1530/eje.1.01946
Smit, L. A., Willett, W. C., & Campos, H. (2010). trans-Fatty acid isomers in adipose tissue have divergent associations with adiposity in humans. Lipids, 45(8), 693–700. https://doi.org/10.1007/s11745-010-3442-z
Song, L., Huang, K., Tian, D., Liu, X., Huang, R., & Luo, J. (2024). Epicatechin ameliorates palmitate-induced insulin resistance in C2C12 myogenic cells by alleviating oxidative stress and activating the AMPK/ACC pathway. Mitochondrial Research, 15(3), Article e2401591. https://doi.org/10.1080/19476337.2024.2401591
Sotoudeheian, M., Hoseini, S., & Mirahmadi, S. M. S. (2023). Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C. Revista Brasileira de Farmacognosia, 33(4), 688–695. https://doi.org/10.1007/s43450-023-00396-5
Stohs, S. J. (2017). Safety, efficacy, and mechanistic studies regarding Citrus aurantium (bitter orange) extract and p-synephrine. Phytotherapy Research, 31(10), 1463–1474. https://doi.org/10.1002/ptr.5879
Stohs, S. J., Preuss, H. G., & Shara, M. (2011). A review of the human clinical studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. International Journal of Medical Sciences, 9(7), 527–538. https://doi.org/10.7150/ijms.4446
Stohs, S. J., Preuss, H. G., & Shara, M. (2012). A review of the human clinical studies involving Citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. International Journal of Medical Sciences, 9(6), 527–538. https://doi.org/10.7150/ijms.4446
Suárez Román, G., Capote Guitián, C., Acosta Sánchez, T., Fernández Romero, T., & Clapés Hernández, S. (2021). Indicadores metabólicos y de estrés oxidativo en ratas con obesidad inducida con glutamato monosódico Metabolic and oxidative stress indicators in monosodium glutamate-induced obese rats. Revista Habanera de Ciencias Médicas, 20(4),e3642. https://www.redalyc.org/articulo.oa?id=180468227009
Taub, P. R., Ramirez-Sanchez, I., Ciaraldi, T. P., Perkins, G., Murphy, A. N., Naviaux, R., ... & Villarreal, F. (2012). Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: Effects of epicatechin-rich cocoa. Clinical and Translational Science, 5(1), 43–47. https://doi.org/10.1111/j.1752-8062.2011.00357.x
Taylor, B. A., & Phillips, S. J. (1996). Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics, 34(3), 389–398. https://doi.org/10.1006/geno.1996.0302
Tounsi, M. S., Wannes, W. A., Ouerghemmi, I., Jegham, S., Ben Njima, Y., Hamdaoui, G., Zemni, H., & Marzouk, B. (2011). Juice components and antioxidant capacity of four Tunisian Citrus varieties. Journal of the Science of Food and Agriculture, 91(1), 142–151. https://doi.org/10.1002/jsfa.4164
Uauy, R., Aro, A., Clarke, R., Ghafoorunissa, L'Abbé, M. R., Mozaffarian, D., Skeaff, C. M., Stender, S., & Tavella, M. (2009). WHO scientific update on trans fatty acids: Summary and conclusions. European Journal of Clinical Nutrition, 63(Suppl. 2), S68–S75. https://doi.org/10.1038/ejcn.2009.15
Ueda-Wakagi, M., Mukai, R., Fuse, N., Mizushina, Y., & Ashida, H. (2015). 3-O-Acyl-epicatechins increase glucose uptake activity and GLUT4 translocation through activation of PI3K signaling in skeletal muscle cells. International Journal of Molecular Sciences, 16(7), 16288–16299. https://doi.org/10.3390/ijms160716288
Unger, R. H. (2003). The physiology of cellular liporegulation. Annual Review of Physiology, 65, 333–347. https://doi.org/10.1146/annurev.physiol.65.092101.142622
Unger, R. H., & Orci, L. (1995). Lipotoxicité dans la pathogenèse du diabète non insulino-dépendant de type 2: implications pour l'obésité Lipotoxicity in the pathogenesis of type 2 non-insulin-dependent diabetes: Implications for obesity. Diabetes, 44(8), 863–870. https://doi.org/10.2337/diab.44.8.863
Vankelecom, H. (2009). Fixation and paraffin-embedding of mouse tissues for GFP visualization. Cold Spring Harbor Protocols, 2009(8), pdb.prot5298. https://doi.org/10.1101/pdb.prot5298
Wlodek, M. E., Westcott, K. T., O’Dowd, R., Serruto, A., Wassef, L., et al. (2005). Uteroplacental restriction in the rat impairs fetal growth in association with alterations in placental growth factors including PTHrP. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(6), R1620–R1627. https://doi.org/10.1152/ajpregu.00789.2004
Yustisia, I., Tandiari, D., Cangara, M. H., Hamid, F., & Daud, N. A. S. (2022). A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats. Heliyon, 8(10), e10896. https://doi.org/10.1016/j.heliyon.2022.e10896
Zámbó, V., Simon-Szabó, L., Szelényi, P., Kereszturi, É., Bánhegyi, G., & Csala, M. (2013). Lipotoxicity in the liver. World Journal of Hepatology, 5(10), 550–557. https://doi.org/10.4254/wjh.v5.i10.550
Zhang, J., Bradbury, K. E., Young, L., & Gontijo de Castro, T. (2025). Trans‑fat labelling and potential presence of industrially produced trans‑fat in the New Zealand packaged food supply: 2015–2019 & 2022. Nutrition, Metabolism & Cardiovascular Diseases, 35(1), 103757. https://doi.org/10.1016/j.numecd.2024.09.027
Zhao, X., Shen, C., Zhu, H., Wang, C., Liu, X., Sun, X., Han, S., Wang, P., Dong, Z., Ma, X., Hu, K., Sun, A., & Ge, J. (2016). Trans-fatty acids aggravate obesity, insulin resistance and hepatic steatosis in C57BL/6 mice, possibly by suppressing the IRS1 dependent pathway. Molecules, 21(6), 705. https://doi.org/10.3390/molecules21060705
Zohdi, V., Pearson, J. T., Kett, M. M., Lombardo, P., Schneider, M., & Black, M. J. (2015). When early life growth restriction in rats is followed by attenuated postnatal growth: Effects on cardiac function in adulthood. European Journal of Nutrition, 54(5), 743–750. https://doi.org/10.1007/s00394-014-0752-6

Authors

Amina Tires
Mustapha Diaf
Bakhta Bouzouira
Meghit Boumediene Khaled
boumedienemeghit.khaled@univ-sba.dz (Primary Contact)
Tires, A., Diaf, M., Bouzouira, B., & Khaled, M. B. (2025). Ameliorative Effects of Citrus aurantium Juice on Metabolic Disorders Induced by Trans Fatty Acid-Rich Amalgam in Wistar rats. The North African Journal of Food and Nutrition Research, 9(20), 249–270. https://doi.org/10.51745/najfnr.9.20.249-270

Article Details

Received 2025-05-17
Accepted 2025-10-18
Published 2025-11-30

Most read articles by the same author(s)

<< < 1 2 3 > >>